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Figure 1. GS-ID pipeline and relighting results. GS-ID introduces a novel lighting model based on adaptively optimized spherical Gaussian
mixtures, enabling precise and editable control of local lighting. Combined with per-splat shadow-aware vectors and diffusion-guided
material priors, GS-ID achieves state-of-the-art illumination decomposition on 3D Gaussian Splatting.

Abstract

Gaussian Splatting (GS) has emerged as an effective rep-
resentation for photorealistic rendering, but the underlying
geometry, material, and lighting remain entangled, hinder-
ing scene editing. Existing GS-based methods struggle to
disentangle these components under non-Lambertian con-
ditions, especially in the presence of specularities and shad-
ows. We propose GS-ID, an end-to-end framework for illu-
mination decomposition that integrates adaptive light ag-
gregation with diffusion-based material priors. In addition
to a learnable environment map for ambient illumination,
we model spatially-varying local lighting using anisotropic
spherical Gaussian mixtures (SGMs) that are jointly opti-
mized with scene content. To better capture cast shadows,
we associate each splat with a learnable unit vector that en-
codes shadow directions from multiple light sources, further

improving material and lighting estimation. By combining
SGMs with intrinsic priors from diffusion models, GS-ID
significantly reduces ambiguity in light-material-geometry
interactions and achieves state-of-the-art performance on
inverse rendering and relighting benchmarks. Experiments
also demonstrate the effectiveness of GS-ID for downstream
applications such as relighting and scene composition.

1. Introduction

3D Gaussian Splatting (3DGS) [14] has emerged as a
promising 3D representation, offering explicit scene mod-
eling with real-time differentiable rendering capabilities.
However, its practical adoption by downstream applica-
tions faces a critical limitation: the inherent entanglement
of geometry, material, and illumination components dur-
ing multiview reconstruction, which prevents further editing



of individual components. Illumination decomposition on
3DGS has significant value as it can facilitate versatile GS
editing using disentangled components, including changing
the light and material for scene composition.

There are three critical challenges in achieving effective
illumination decomposition on 3DGS. 1) Insufficient light
modeling: Existing methods struggle to represent complex
lighting environments, often failing to balance global am-
bient lighting with localized high-frequency effects. 2)
Entangled shadows: Shadows arising from intricate light-
geometry interactions obscure material estimation and are
difficult to isolate. 3) Ill-posed intrinsic estimation: With-
out priors, decomposing the coupled outputs of 3DGS into
geometry, material, and lighting remains highly ambiguous.

Recent methods [4, 5, 10, 11, 16, 29, 35] model illumi-
nation using global lighting representations, such as learn-
able environment maps or neural light fields. However, they
typically assume distant light sources, neglecting near-field
effects that are critical for capturing localized specular high-
lights and accurate material properties. Emerging solutions
like VMINer [7] and GS3 [3] incorporate photometric prior
knowledge (e.g., predefined light sources, intensity distribu-
tions, and angular profiles) into near-field illumination mod-
eling. However, strong parametric assumptions about light
configurations restrict their practical applicability, making
them dependent on synthetic scenes with calibrated lighting
setups. Shadow modeling is another bottleneck. MII [37]
employs a learned visibility MLP, but struggles with mul-
tiple discrete light sources. Prior-free decomposition un-
der such conditions remains ill-posed, especially in in-the-
wild captures. To resolve geometry-light ambiguity, DN-
Splatter [25] uses pre-trained models to provide pseudo-
normal supervision, but it relies on additional sensors (e.g.,
LiDAR), limiting its applicability.

To address these challenges, we propose GS-ID, a novel
end-to-end framework for illumination decomposition on
3DGS. GS-ID integrates an adaptive lighting model, a de-
shadowing module, and pretrained diffusion-based priors
for geometry and material. A customized CUDA-based op-
timization with deferred rendering further accelerates the
decomposition process. Inspired by production lighting
pipelines in tools like Unity [26] and Unreal Engine [6],
which combine ambient lighting with localized sources,
we design a lighting model that explicitly separates ambi-
ent and localized illumination. GS-ID represents ambient
light via a learnable environment map and models high-
frequency localized lighting using spatially-varying spheri-
cal Gaussian mixtures (SGMs). These SGMs are initialized
on a 3D grid and adaptively aggregated during optimization
to capture complex lighting effects (Section 3.1). To handle
shadow-induced errors in material estimation, we introduce
a deshadowing module that learns per-splat visibility vec-
tors, enabling the network to disentangle shadows caused

by multiple unknown light sources (Section 3.2). Finally,
to resolve ambiguity in joint light-material optimization,
we introduce pretrained diffusion priors. For geometry, we
incorporate normal priors [34] to stabilize reconstruction.
For material, we guide decomposition using albedo and
roughness maps from a pretrained diffusion model (Sec-
tion 3.3.1).

This paper makes the following contributions:
• We introduce GS-ID, an end-to-end framework for illu-

mination decomposition, which leverages material priors
from pretrained diffusion models to improve joint light
and material optimization on 3DGS.

• We propose a novel lighting model supporting adaptive
optimization of local and ambient illumination under un-
known conditions with a CUDA implementation.

• We develop a GS-based visibility-aware deshadowing
model for efficient shadow approximation caused by mul-
tiple light sources, improving material estimation quality.

2. Related Work
Geometry Reconstruction. Regarding surface reconstruc-
tion, some methods [20, 21, 23, 28, 31, 32] use an MLP to
model an implicit field representing the target surface. After
training, surfaces are extracted using isosurface extraction
algorithms [12, 17]. Recently, several methods [9, 33] have
achieved fast and high-quality geometry reconstruction of
complex scenes based on 3DGS [14]. However, these meth-
ods often treat the appearance of a functional of view di-
rections, neglecting the modeling of physical materials and
light transport on the surface.

Intrinsic Decomposition. To decompose the intrin-
sics from observations, some monocular methods [15, 34,
39, 40] learn from labeled datasets and estimate intrin-
sics directly from single images. However, these methods
lack multi-view consistency and struggle to tackle out-of-
distribution cases. In contrast, other methods [2, 10, 11,
16, 18, 24, 36, 38] construct a 3D consistent intrinsic field
from multiple observations. While obtaining impressive re-
sults, current methods almost only consider environmental
illumination, making precise editing challenging.

Lighting Models. Accurate illumination estimation
from multi-view observations remains challenging due to
inverse rendering ambiguities. Current methodologies pri-
marily follow two paradigms: 1) For unknown illumi-
nation conditions, approaches utilize either implicit neu-
ral representations (e.g., MLP-based coordinate networks
like NeRF variants [4, 5]) or explicit parametric models
(e.g., HDR environment maps in [11, 16]). While neu-
ral light fields ( [30, 35]) achieve differentiable surface re-
construction with inter-reflection modeling through MLPs,
they trade interpretability for flexibility - excelling at view
synthesis but lacking spatially aware editing controls. Ex-
plicit directional lighting models enable intuitive environ-



Figure 2. Illustration of the SGM optimization process. (a) A single SGM can adaptively represent different anisotropic illuminations
after optimization. (b) Multiple SGMs can adaptively aggregate to represent complex and irregular highlight regions. (b) Illustration of the
overall adaptive lighting optimization. The detailed optimization process is available in the supplemental material.

mental map replacement yet fail to resolve localized light
interactions. 2) Under known illumination constraints (e.g.,
calibrated flash images), hybrid decomposition frameworks
like VMINER [7] leverage controlled captures with/with-
out auxiliary lights to separate near/far-field components
within fixed viewpoints. This photometric prior integra-
tion addresses partial information scenarios but restricts dy-
namic scene adaptation.

3. Methodology
GS-ID uses an adaptive lighting model, a deshadowing
model, and diffusion-guided normal and material priors to
decompose intrinsic properties from illumination on 3DGS.
We use deferred shading with the G-buffer pack for more
efficient rendering. Figure 3 shows the complete GS-ID
pipeline. To initialize a reasonable 3DGS scene before opti-
mizing the lighting model, we only use normal priors in the
first 20k iterations for reconstruction, and use all normal
and material priors afterward for joint material and lighting
optimization.

3.1. Adaptive Lighting Model
Effectively modeling complex lighting conditions in a scene
is the first step toward illumination decomposition. We
propose an adaptive lighting model using a set of SGMs
to model high-frequency lighting components originating
from spatially localized discrete emitters and a learnable en-
vironment map to model ambient illumination. The initial
SGMs are uniformly placed in a fixed range of [−3, 3]3. Our
optimization process aggregates them to model the complex
local lighting adaptively.

Using this adaptive lighting model, we formulate inci-
dent radiance as: Li = LSGM

i + Lenv
i , where LSGM

i accounts
for high-frequency effects from discrete emitters and Lenv

i is
ambient lighting from distant sources. The rendering equa-
tion can be written as:

Lo(x,ωo) =

∫
Ω

Lenv
i (x,ωi)fr(ωi,ωo)(ωi · n)dωi+∫

Ω

LSGM
i (x,ωi)fr(ωi,ωo)(ωi · n)dωi

≈Lenv
o (x,ωo) + LSGM

o (x,ωo) ∗ V,

(1)

where x represents a point in the 3D space and n is the sur-
face normal. fr is the bidirectional reflectance distribution
function (BRDF) for physically based rendering [19]. ωi

and ωo refer to the incident and outgoing directions, respec-
tively. V represents a modulating weight caused by shadow,
which is modeled in detail in Section 3.2.

3.1.1. SGM-Based Local Lighting
Local light sources are often accountable for various light-
ing effects like highlights. We model complex local lighting
using SGMs [27], where each SGM comprises nSG indi-
vidual SGs. The k-th SG in an SGM is parameterized by
primary emission direction bk ∈ S2, sharpness λk ∈ R+,
amplitude µk ∈ R+, and mixture weights wk ∈ R3 con-
trolling RGB chromaticity. An SGM contains multiple di-
rectional lobes represented by the SGs along their primary
emission directions, producing a “spotlight-like” distribu-
tion (Figure 2a). Multiple SGMs can be adaptively placed
in the 3D space and aggregated to model complex light
sources that cause irregular highlights. As shown in Fig-
ure 2b, the SGMs can be jointly optimized because of their
differentiable parameters:

SGM(ωo; b,λ,µ) =

nSG∑
k=1

µke
λk(ωo·bk−1) ·wk. (2)

The output radiance LSGM
o at the surface point x integrates

incident illumination through the Cook-Torrance BRDF fr:

LSGM
o (x,ωo) =

∫
Ω

fr(ωi,ωo)L
SGM
i (x,ωi)(n · ωi)dωi

≈
Nlight∑

j

f
(j)
r · SGM(ω

(j)
o )(n · ω(j)

i ) ∗ Vj

|pj − x|2 ,

(3)

where Nlight SGMs are initialized on a 3D grid and strate-
gically optimized. All SGs in an SGM use the same spa-
tial position pj while maintaining their own SG parameters
(bk, λk, µk). The modulating weight caused by shadow, Vj ,
is estimated using a shadow-aware unit vector associated
with each splat and each lighting direction, as discussed in
Section 3.2 and illustrated in Figure 2. |pj − x| is the dis-
tance between the surface and the j-th light source, mod-
eling illumination decay over distance. To enhance com-
putational efficiency, we apply progressive pruning of low-
energy SGMs with |wk| < τ , as discussed in Section 4.1.
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Figure 3. Overview of the GS-ID pipeline. We first reconstruct a coarse 3D Gaussian Splatting (3DGS) scene using normal priors from a
diffusion model. Material priors are then incorporated to jointly optimize illumination and intrinsic properties, which are stored as G-Buffer
maps for efficient deferred shading. Illumination is represented by an adaptive lighting model composed of spherical Gaussian mixtures
(SGMs) and a learnable environment map.

To ensure that SGM optimization leads to an accurate
model of local lighting rather than ambient lighting, we in-
troduce two regularization terms considering the position
and value of each SGM light source:

Lpos =

Nlight∑
j

max(d
(j)
min − dmax, 0), Lval =

Nlight∑
j

nSG∑
k

∥wjk∥2

Llight = λposLpos + λvalLval.
(4)

Here d(j)min = min
x

|pj −x| represents the minimum distance
between the j-th light position pj and the surface position
x in the scene. The 3D position x in world coordinates
is derived by back-projecting the depth value D̂ from the
depth buffer. The parameter dmax is a hyperparameter with
a default value of 3. The weight wjk is responsible for con-
trolling the contribution of the k-th SG in the j-th SGM. We
set both λpos and λval to 1×10−6 by default. These two reg-
ularization terms help direct the SGMs toward the surface
so that SGMs can better model complex local lighting.

Our SGM-based lighting model can represent spatially
varying illumination through an adaptive mechanism. Com-
pared to existing methods, as illustrated in Figure 1, our
approach can create lighting effects like localized highlight
regions and easily support illumination editing.

3.1.2. Ambient Lighting

In addition to local lighting, ambient lighting Lenv
o can be

reformulated into its diffuse (Lenv
o-diff) and specular (Lenv

o-spec)
components. We adopt an image-based lighting model and
the split-sum approximation [13] to handle the intractable

integral. Lenv
o can be represented as:

Lenv
o (x,ωo) = Lenv

o-diff + Lenv
o-spec,

Lenv
o-diff ≈ Kenv

diffI
env
diff , Kenv

diff = (1−M)
A

π
,

Lenv
o-spec ≈

∫
Ω

DFG

4(n · ωo)
dl︸ ︷︷ ︸

Environment BRDF (Kenv
spec)

·
∫
Ω

DLi(l)(l · n) dl.︸ ︷︷ ︸
Pre-Fil. Env. Map (Ienv

spec)

(5)

Kenv
spec can be quickly accessed in precomputed lookup ta-

bles. Ienv
diff and Ienv

spec are embedded within a learnable envi-
ronment map.

3.2. Deshadowing Model
During reconstruction, cast shadows are often baked into
the albedo, leading to inaccurate material estimation. Ex-
isting methods like ray tracing or offline baking [16] are
non-differentiable and computationally expensive, limiting
scalability. To address this during training, we assign each
3DGS primitive a learnable unit vector s ∈ S2 that captures
the dominant shadow direction under multiple lights. These
vectors are alpha-blended [14] into a screen-space shadow
field and integrated into the G-buffer, enabling efficient, dif-
ferentiable shadow prediction without explicit ray tracing
(see Figure 4a). This deshadowing mechanism is used only
during training. At inference, standard shadow mapping
techniques are applied for relighting (see Figure 4b).

The visibility of incident light from direction ω
(j)
i is es-

timated as:

Vj = σ
(
α · Ŝ · ω(j)

i + β
)
, (6)

where Ŝ is a screen-space shadow vector field derived from
alpha-blending the per-primitive vectors s in the G-Buffer.



Figure 4. Illustration of our proposed deshadowing model. The lighting directions are denoted by ω1 and ω2. For each Gaussian splat, we
optimize a unit vector s to represent the dominant direction in which a light casts a shadow on it.

Here, σ(·) denotes the sigmoid function. The hyperparame-
ters α and β modulate the sharpness and baseline level of
shadow effects, respectively, with default values α = 8
and β = 10−3. This differentiable formulation facilitates
shadow-material disentanglement during training, as visual-
ized in Figure 7 and validated through ablation in Figure 9.

3.3. Diffusion-Guided Priors
3.3.1. 3DGS Reconstruction with Normal Priors
We observe that 3DGS reconstruction sometimes mistak-
enly interprets glossy regions as holes, as shown in Figure 8.
To address this issue, we incorporate priors from a monoc-
ular geometric estimator to improve the output geometric
structures. Specifically, we leverage a pretrained diffusion
model RGB↔X [34] to provide normal supervision. The
supervision loss Lbase is defined as:

Lbase = Lcolor + λnLn,

Ln =
∑
n̂⊂N̂

1
(
1− n̂Tn

)
, (7)

where Lcolor is an RGB reconstruction loss that combines
the L1 loss with D-SSIM from 3DGS. We use RGB↔X to
estimate the normal vector n, treating it as a pseudo ground
truth (pseudo-GT) normal, to supervise our rendered normal
n̂ in the G-buffer pack. We propose a depth-masked weight-
ing scheme to avoid unreliable priors from distant areas. We
assign a weight of 0 to pixels with depth values exceeding a
default threshold of 0.8 and a weight of 1 otherwise, which
we denote as 1 in Equation (7). The hyperparameter λn

is set to a default value of 0.05. By incorporating normal
priors, we improve the accuracy of normal estimation and
address geometry reconstruction challenges in textureless
regions, providing robust normal estimation.

3.3.2. Light Optimization with Material Priors
To reduce the inherent ambiguity in joint light optimization,
we leverage pseudo-GT material attributes derived from
RGB↔ X [34]:

Lmaterial = λRL2(R, R̂) + λAL2(A, Â), (8)

where R̂ and Â denote estimated roughness and RGB
albedo maps from the G-buffer pack, while R and A rep-
resent their corresponding pseudo-GT values. We omit the
metallic term as it shows a weak impact on lighting effects.
The hyperparameters λR and λA are set to default values
of 0.1 and 1.0, respectively. Combining Equations (4), (7)
and (8), the total loss is:

Ltotal =Lbase + Llight + Lmaterial, (9)
where Llight and Lmaterial take effect after 10k iterations after
an initial scene is reconstructed.

4. Experiments
4.1. Implementation Details
We implement GS-ID and conduct experiments on an
NVIDIA RTX 4090 GPU. The pipeline begins by adapt-
ing the original 3DGS method [14] for 20k iterations to re-
construct robust scene geometry, assisted by normal priors.
For illumination decomposition, we initialize Nlight = M3

localized spherical Gaussian mixtures (SGMs) uniformly
distributed within the scene’s axis-aligned bounding box
(AABB), where M controls the spatial resolution. We em-
pirically set M = 3 to balance expressiveness and compu-
tational efficiency. Each SGM contains nSG = 16 spherical
Gaussians. The position pj of each SGM is defined as:

pj = cmin +

(
jx

M−1
,

jy
M−1

,
jz

M−1

)
⊙ (cmax − cmin), (10)

where cmin and cmax are the AABB bounds (default:
[−3, 3]), and jx, jy, jz index the grid.

Other hyperparameters, including the shadow vector
blending parameters (α, β) = (8, 10−3), are selected em-
pirically to ensure stable gradient behavior. Crucially, our
framework includes light regularization terms—both value-
and position-based—that consistently guide the optimiza-
tion to convergence across different initializations and hy-
perparameter choices, reducing the sensitivity to manual
tuning. To improve training efficiency, we employ an
energy-aware pruning strategy that adaptively disables low-
activation light sources during optimization:

wmax = max
i,j,k

w
(t)
ijk, τ (t) = wmax + ln(δ), (11)
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Figure 5. Qualitative evaluation on the TensoIR dataset. GS-ID disentangles shadows effectively and yields more accurate albedo, normal,
and roughness maps. Albedo and roughness are evaluated using the same protocol as TensoIR.

Method Roughness
MSE ↓

Normal
MAE ↓

Albedo Novel View Synthesis Relighting Training
TimePSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

N
eR

F

InvRender [38] 0.008 5.074 27.34 0.933 0.100 27.37 0.934 0.089 23.97 0.901 0.101 15 hrs
NVDiffrec† [18] 0.010 6.078 29.17 0.908 0.115 30.70 0.962 0.052 19.88 0.879 0.102 1.2 hrs
TensoIR [11] 0.013 4.100 29.28 0.950 0.085 35.09 0.976 0.040 28.58 0.944 0.081 3.9 hrs

3D
G

S

GSshader† [10] 0.065 6.647 18.59 0.876 0.092 19.99 0.891 0.089 22.42 0.872 0.103 35 min
RelightGS† [8] 0.016 6.078 29.47 0.930 0.107 37.57 0.983 0.020 24.41 0.890 0.100 41 min
GS-IR† [16] 0.027 4.947 30.29 0.941 0.084 35.33 0.974 0.027 24.37 0.885 0.096 26 min
Ours† 0.007 4.602 33.49 0.952 0.079 39.13 0.984 0.020 28.69 0.947 0.075 40 min

Table 1. Quantitative evaluation on the TensoIR Synthetic dataset. Real-time methods are labeled with †.

Method Albedo Novel View Synthesis
PSNR↑ SSIM↑ LIPPS↓ PSNR↑ SSIM↑ LIPPS↓

GSshader† [10] 25.375 0.912 0.071 36.248 0.967 0.043
GS-IR† [16] 25.471 0.926 0.068 36.858 0.971 0.041
RelightGS† [8] 27.223 0.953 0.057 40.228 0.990 0.012
Ours (33 SGMs)† 29.133 0.954 0.056 40.412 0.988 0.012

Table 2. Quantitative comparison on the ADT dataset.

where i ∈ [1, Nlight], j ∈ [1, nSG], k denotes the RGB chan-
nels, and δ=10−3 by default. SGMs with all weights below
threshold τ are progressively pruned throughout training.

The memory complexity of screen-space lighting evalua-
tion, O(HWNlightnSG), is addressed via customized CUDA
kernels using chunked processing and G-Buffer–aware
computation to reduce peak GPU memory. After light
initialization and pruning, joint optimization of geometry,
lighting, and material proceeds for an additional 10k iter-
ations under the supervision of pretrained diffusion priors.
The full pipeline achieves real-time rendering at 60 fps with
approximately 1.2× GPU memory usage and 1.5× longer
training time compared to vanilla 3DGS.

4.2. Datasets and Metrics

We evaluate GS-ID on three complementary datasets to
comprehensively assess illumination decomposition perfor-
mance across both synthetic and real-world scenarios. Our
primary benchmark is the TensoIR Synthetic dataset [11],
which provides four object-centric scenes with ground-truth
albedo and roughness maps. We further enhance this dataset
by rendering additional screen-space roughness maps to
supplement its existing intrinsic ground truth. To validate
real-world performance, we adopt two sources: (1) A cu-
rated relighting dataset of four high-fidelity scanned ob-
jects from the Aria Digital Twin (ADT) repository [22],
which provides high-resolution geometry and material un-
der varied lighting; (2) Nine unbounded real-world scenes
from Mip-NeRF 360 [1], covering diverse indoor and out-
door environments with complex, spatially-varying illumi-
nation. For evaluation, we use a combination of standard
novel view synthesis (NVS) metrics—PSNR, SSIM, and
LPIPS—as well as mean angular error (MAE) of surface
normals to measure the fidelity of geometric reconstruction.
To ensure a fair comparison, we slightly adjust the render-



Figure 6. Qualitative comparison on the ADT dataset. GS-ID separates different illumination components and removes specular highlights
and shadow artifacts from albedo estimation, significantly outperforming existing solutions under unknown lighting conditions.

Figure 7. Relighting results on the Mip-NeRF 360 dataset. Our adaptive lighting model supports both environment relighting and SGM
relighting with shadow maps. Remarkably, relighting is achieved solely by modifying light parameters, with no need for retraining.

ing equation in Equation (1) to:

Lradiance
o =

Lenv
o (x,ωo)

Â
+ LSGM

o (x,ωo) · V, (12)

where Â denotes the albedo from the G-Buffer and V repre-
sents the visibility term. This adjustment aligns our predic-
tion with radiance-only baselines for consistent evaluation.
Additional results on more scenes and evaluation details are
provided in the supplementary material.

4.3. Comparative Analysis
Illumination Decomposition Analysis on TensoIR. Quan-
titative results on the TensoIR dataset (Table 1) demonstrate
the comprehensive advantages of our method. We achieve
a PSNR of 39.13 dB for novel view synthesis (NVS), sur-
passing the second-best method R3DG by 1.56 dB, and re-
duce the surface normal estimation error by 24.2% (4.602
vs. 6.078 MAE). While TensoIR achieves slightly lower

normal error due to its spatially continuous MLP branch,
our GS-based design enables more efficient joint optimiza-
tion, leading to improved albedo, roughness, and overall
relighting performance. Furthermore, our method reduces
training time by 87% and significantly lowers memory con-
sumption. It also outperforms all GS-based baselines in
both normal estimation and relighting quality.

Illumination Decomposition Analysis on ADT. Our
experiments on the ADT dataset focus explicitly on eval-
uating material (albedo) and illumination (radiant inten-
sity) decomposition accuracy. As shown in Figure 6, our
framework robustly separates diffuse reflectance from high-
frequency lighting effects, achieving cleaner albedo maps
and physically consistent radiance fields compared to base-
lines—a direct outcome of our adaptive light model. Ex-
isting methods, by contrast, exhibit residual highlights con-
taminating their radiance predictions or oversmoothed/al-
tered textures degrading their estimated albedo (e.g, specu-



lar surfaces). Quantitatively (Table 2), we outperform alter-
natives across both tasks, with particularly significant mar-
gins (+12% PSNR) for NVS due to faithful disentanglement
of these components.

Illumination Decomposition Analysis on Real-World
Dataset. On the unbounded real-world Mip-NeRF 360
dataset, our framework demonstrates robust performance
under challenging natural illumination. As shown in Fig-
ure 7, our method supports both far-field and near-field re-
lighting with high visual fidelity.

4.4. Ablation Study
We conduct an ablation study to evaluate the effectiveness
of the introduced diffusion priors, the proposed lighting
model, and our CUDA deferred shading scheme.

Analysis of Diffusion Priors. To validate the efficacy of
diffusion-derived priors, we categorize them into two dis-
tinct components: normal priors and material priors. The
quantitative comparisons in Table 3 show that both priors
improve the results of NVS and illumination decomposi-
tion. Figure 8 shows that normal prior elimination leads
to holistic misestimation of specular areas. Our extensive
validation confirms that the proposed hyperparameter con-
figuration achieves optimal performance.

Analysis of Lighting Model. GS-ID employs an adap-
tive lighting model that combines parametric SGMs with
an environment map to capture complex illumination. We
conduct ablations by disabling SGMs and removing the En-
vMap. As shown in Table 3, combining both components
improves albedo and NVS accuracy, with SGMs offering a
larger PSNR gain for NVS (38.18 dB vs. 36.67 dB). Fig-
ure 9 shows SGMs better capture high-frequency specular-
ities, while the absence of a shadow field hinders shadow
removal, reducing albedo accuracy by 3.213 dB.

Analysis of Shading Schemes. Forward shading with
PBR requires substantial computational resources, as it
computes the rendering equation for each primitive. This is-
sue is exacerbated when rendering with Gaussian Splatting,
where millions of GS points are typically present in a scene.
We compared the training times between forward and de-
ferred shading across various scenes from the Mip-NeRF
360 dataset [1]. The results (Table 4) demonstrate that de-
ferred shading accelerates training, with faster scaling with
the number of points, achieving up to a 4 times speedup.
Furthermore, our CUDA implementation of differentiable
rendering enables saving over 40% storage space.

Discussion and Limitations. Our work has achieved
good performance in illumination decomposition, but some
directions are worth further exploration. We found that nat-
ural materials and geometry are often isotropic, while our
current 3DGS representation is anisotropic, creating extra
Gaussian shapes. We hope to develop an isotropic repre-
sentation to save storage space in the future.

Figure 8. Effects of normal priors. Normal priors prevent areas
with specular reflections from being misestimated as holes, signif-
icantly improving normal estimation accuracy.

Figure 9. Effects of lighting components. Left: Shadow field es-
timation removes shadow artifacts from albedo estimation. Right:
Adaptive SGMs enable accurate specular highlight reconstruction
in albedo estimation.

Method Normal Albedo Novel View Synthesis
MAE↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o normal 5.187 32.140 0.941 0.089 37.962 0.978 0.028
w/o material 4.867 29.585 0.935 0.096 38.189 0.975 0.027
w/o all priors 5.286 29.101 0.921 0.099 37.950 0.962 0.030
w/o SGMs 5.916 26.725 0.911 0.096 36.670 0.953 0.031
w/o EnvMap 4.701 32.320 0.942 0.090 38.180 0.975 0.028
w/o shadow field 4.751 30.280 0.941 0.091 37.580 0.974 0.029
single SGM 4.616 32.191 0.950 0.089 38.670 0.982 0.025
forward 4.660 32.688 0.951 0.088 39.015 0.980 0.024
Ours 4.602 33.493 0.952 0.079 39.130 0.984 0.020

Table 3. Ablation study on the TensoIR Synthetic dataset. The
results show the effects of priors from diffusion models, our pro-
posed deshadowing model, and the adaptive lighting model.

Scene Points Training Time↓ (w. CUDA) GPU Memory↓ (Def. Shading)
Fwd. Shading Def. Shading w/o CUDA w. CUDA

room 1.23M 82min 62min 28.2G 18.5G
kitchen 1.31M 88min 66min 29.3G 18.8G
garden 3.55M 299min 68min 36.8G 21.4G
bicycle 3.84M 305min 70min 38.9G 21.9G

Table 4. Comparison of shading schemes on the Mip-NeRF
360 [1] dataset. Deferred rendering can achieve up to a 4× accel-
eration in complex scenes, with consistent speedup. Our CUDA
implementation can save over 40% GPU memory.

5. Conclusion
We propose GS-ID, an end-to-end framework for illumi-
nation decomposition on 3D Gaussian Splatting. It inte-
grates an adaptive lighting model, a deshadowing module,
and geometry/material priors extracted from pretrained dif-
fusion models. GS-ID further incorporates a customized
CUDA-based optimization pipeline and deferred shading to
improve convergence and efficiency. Experiments show that
GS-ID surpasses existing methods in both illumination and
intrinsic decomposition. Moreover, it enables high-quality,
user-controllable light editing and scene composition, sup-
porting diverse downstream applications.



Acknowledgements. We sincerely appreciate the Meituan
Academy of Robotics’ constructive feedback throughout
the project.

References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5470–5479, 2022. 6, 8

[2] Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall,
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